UT to Bear Swamp Stream Restoration 2004 Annual Monitoring Report

- Delivered to: NCDENR/Ecosystem Enhancement Program 1619 Mail Service Center Raleigh, NC 27699-1619
- Prepared by: Biological & Agricultural Engineering Water Resources Research Institute North Carolina State University Campus Box 7625 Raleigh, NC 27695

March, 2005

2004 UT to Bear Swamp Creek Monitoring Abstract

An unnamed tributary of Bear Swamp Creek was restored through the North Carolina Wetlands Restoration Program (NCWRP). The objectives of the project are to:

- 1.) Establish an stable dimension, pattern and profile on 1400 feet of an UT to Bear Swamp
- 2.) Improve habitat within the UT to Bear Swamp
- 3.) Establish an riparian buffer along the UT to Bear Swamp
- 4.) Incorporate this project into a watershed wide management plan

This is the 2^{nd} year of the 5-year monitoring plan for the unnamed Tributary of Bear Swamp Creek.

Project Name	Unnamed Tributary of Bear Swamp Creek
Designer's Name	ARCADIS G&M of North Carolina, Inc 801 Corporate Center Drive
	Suite 300
	Raleigh, NC 27607
Contractor's Name	Unknown
Project County	Franklin County, North Carolina
Directions to Project Site	From Louisburg NC take Route 401 north towards Henderson. Approximately 1 mile north of Louisburg turn left onto West Dykings Road. Continue on Dykings Road 0.9 miles to Murphy's Hay Farm on the left. Turn into Murphy's Hay Farm the UT to Bear Swamp Creek is located in the pasture of the farm. The owner of the Farm is Glenn Murphy.
Drainage Area	0.26 sq. mi.
USGS Hydro Unit	03020101
NCDWQ Subbasin	03-03-02 Upper Tar-Pamlico River Basin
Project Length	1,450 Linear feet
Restoration Approach	1,450 ft of priority 2 Natural Channel Design (dimension, pattern, and profile)
Date of Completion	Summer 2002
Monitoring Dates	January 2004, July, 2004

Table 1A. Background Information

Results and Discussion

Overall, while the majority of the stream is functioning well and holding grade, the stream has areas of concern and areas of immediate need. Table 2 shows a summary of monitoring measurement results. The stream classifies as a B5c with areas of bedrock outcrops and rock cross vanes that control and hold the grade. Channel dimension and pattern are similar to asbuilt conditions. There are a few isolated areas of bank erosion. The channel profile is void of many defined bed features and is dominated by runs and pools. There were only five semi-stable riffles located on the restored reach during the 2004 monitoring period. Vegetation is not succeeding to levels required for mitigation credit, replanting trees to obtain mitigation requirements and live stakes only in areas where erosion is problematic. Invasive vegetation is not a major issue on this project site. The fescue should be monitored however, and may need control so more diverse herbaceous vegetation can develop. Placed structures are holding grade and functioning well, with the exception of some localized erosion and four of the structures have piping below the head rock.

Table 2. Summary of Channel Conditions

DIMENSION	UT Bear Cross-se Rif	Swamp ection #1	UT Bear Cross-se Rif	r Swamp ection #2 ffle	UT Bear Cross-se Po	Swamp ection #3 ool	UT Bear Cross-se Po	r Swamp ection #4 ool	UT Bear Cross-se Rif	r Swamp ection #5 ffle
Monitoring Year	2003	2004	2003	2004	2003	2004	2003	2004	2003	2004
Bankfull Cross-sectional Area	N/A	10.4	N/A	11.2	N/A	18.8	N/A	13.6	N/A	11.2
Bankfull Width	N/A	10.3	N/A	10.2	N/A	13.6	N/A	13.5	N/A	10.6
Bankfull Mean Depth	N/A	1.0	N/A	1.1	N/A	1.4	N/A	1.0	N/A	1.1
Bankfull Max Depth	N/A	1.5	N/A	2.9	N/A	2.2	N/A	2.3	N/A	1.8

	U	Г Bear Swar	np	UT Bear Swamp	U	UT Bear Swamp			
PATTERN		Design		As-built 2003		2004			
	Minimum	Maximum	Median	Minimum Maximum Median	Minimum	Maximum	Median		
Meander Wave Length	18	77	40	Not Reported	75	240	149		
Radius of Curvature	55	342	199	Not Reported	28	261	81		
Beltwidth	20	80	37	Not Reported	19	28	21		

	UT	Г Bear Swar	np	UT Bear Swamp	U	UT Bear Swamp			
PROFILE		Design		As-built 2003		2004			
	Minimum	Maximum	Median	Minimum Maximum Median	Minimum	Maximum	Median		
Riffle Length	8	23	18	Not Reported	8	23	18		
Riffle Slope	0.2%	1.3%	0.7%	Not Reported	0.5%	3.4%	1.2%		
Pool Length	6	11	8	Not Reported	9	22	13		
Pool to Pool Spacing	19	61	37	Not Reported	23	66	45		
Valley (TOB) Slope		1.9%		Not Reported	1.9%				
Bankfull Slope	1.6%	1.6%	1.6%	Not Reported	1.4%	1.8%	1.8%		

	UT Bear Swamp		UT Bear Swamp		UT Bear Swamp		UT Bear Swamp		UT Bear Swamp	
SUBSTRATE	Cross-section #1		Cross-section #2		Cross-section #3		Cross-section #4		Cross-section #5	
	Riffle		Riffle		Pool		Pool		Riffle	
Monitoring Year	2003	2004	2003	2004	2003	2004	2003	2004	2003	2004
d50	N/A	0.15	N/A	0.23	N/A	0.26	N/A	0.30	N/A	0.35
d84	N/A	0.93	N/A	0.68	N/A	0.99	N/A	1.33	N/A	2.10

VECETATION 2004 Monitoring	Quad 1 - Bear		Quad 2	- Bear	Quad 3	- Bear	Quad 4 - Bear	
VEGETATION 2004 Monitoring	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	680	80	280	0	960	200	360	0
Shrub Stratum (% cover)	8	n/a	11	n/a	0	n/a	0	n/a
Herb Stratum (%cover)	100	n/a	112	n/a	107	n/a	28	n/a

* Planted value represents number of stems observed alive that were planted.

The following areas of concern should be monitored closely and considered for repair as suggested:

Unnamed Tributary of Bear Swamp Creek

- Water piping through Rock Cross Vane structures
 - There are three rock cross vanes that are allowing water to pipe under the head rock of the structure at stations 1+60, 3+25 and 6+05
 - At station 1+60 the rock cross vane has water piping under the invert rock with a head loss of 4 inches due to the piping. At this point the structure is not at risk of complete failure due to the boulder size used for the vane construction, the total number of vanes in the project, and the existing vegetation
 - At station 3+25 the rock cross vane has water piping under the invert rock with a head loss of 4 inches due to the piping. At this point the structure is not at risk of complete failure due to the boulder size used for the vane construction, the total number of vanes in the project, and the existing vegetation
 - At station 6+05 the rock cross vane has water piping under the invert rock with a head loss of 8 inches due to the piping. At this point the structure is not at risk of complete failure due to the boulder size used for the vane construction, the total number of vanes in the project, and the existing vegetation
- Areas with bank erosion
 - Bank erosion has been noted at four locations on the stream
 - Bank Erosion due to localized head cuts of 4-8 inches from the piping of water through rock cross vanes occurred at stations
 - Some banks near root wads also have some localized bank erosion
 - There are two areas of major bank erosion due to the overland flow and seepage at station 7+45 on the left bank and station at 8+45 on the left bank Possible repairs would include regarding the gully, preparing this area and seeding with a tackafier and straw mulch
 - The entire length of restored stream has on five existing riffle features
- Vegetation
 - Replanting trees should occur to obtain mitigation requirements
 - The site could benefit from larger containerized trees both for bank stability and aesthetics, although mitigation requirements are currently being met.
 - It is recommended to stake in areas where erosion is problematic, particularly on outside meander bends.
 - Exotic invasive vegetation is a major issue on this project site. Without control the exotic invasive vegetation will likely out-compete native vegetation for resources. A maintenance plan is recommended for control of these species.

Photos

The following are photographs of typical sections and areas of concern throughout the project.

Typical Riffle

Issue Photo 1. Piping under Structure STA: 3+25

Typical Pool

Issue Photo 2. Bank Erosion STA: 9+30

*There are more issue photos in the photo log of this report

Table of Contents

2004 UT to Bear Swamp Monitoring Abstract	i
Table of Contents	viiii
Tables and Figures	viiii
1.0 BACKGROUND INFORMATION	
1.1 Goals and Objective	2
1.2 Project Location	2
1.3 Project Description	2
2.0 YEAR 2004 RESULTS AND DISCUSSION	7
2.1 Vegetation	7
2.1.1 Results and Discussion	7
2.2 Morphology	
2.2.1 Results and Discussion	
2.3 Biological and Ecology	
2.3.1 Results and Discussion	10
2.4 Areas of Concern	14

Tables and Figures

Figure 1. Project Location	3
Figure 2. Watershed Ortho-photo	4
Figure 3. Plan view of As-built conditions	5
Figure 4. Plan view of 2004 overlain on As-built	6
Table 1. Summary of Results	.12
Figure 5. Bear Swamp Creek Profile	.13
Figure 5. Bear Swamp Creek Up-stream Profile	.13
Figure 5. Bear Swamp Creek Down-Stream Profile	.13

Table 1. Background information

Project Name	Unnamed Tributary of Bear Swamp Creek
Designer's Name	ARCADIS G&M of North Carolina, Inc
	801 Corporate Center Drive
	Suite 300
	Raleigh, NC 27607
Contractor's Name	Unknown
Project County	Franklin County, North Carolina
Directions to Project Site	
	From Louisburg NC take Route 401 north towards
	Henderson. Approximately 1 mile north of Louisburg turn left
	onto West Dykings Road. Continue on Dykings Road 0.9
	miles to Murphy's Hay Farm on the left. Turn into Murphy's
	Hay Farm the UT to Bear Swamp Creek is located in the
	pasture of the farm. The owner of the Farm is Glenn Murphy.
Drainage Area	0.26 sq. mi.
USGS Hydro Unit	3020101
NCDWQ Subbasin	03-03-02 Upper Tar River Basin
Project Length	1,450 Linear feet
Restoration Approach	1,450 ft of priority 2 Natural Channel Design (dimension,
	pattern, and profile)
Date of Completion	Summer 2002
Monitoring Dates	January 2004, July, 2004

-

1.0 BACKGROUND INFORMATION

Project planning was initiated for the Unnamed Tributary of Bear Swamp Creek Stream Restoration in 2001 for the implementation of an rural stream restoration project in Franklin County, North Carolina (Figure 1).

The project consisted of the analysis of the 0.26 square mile portion of the UT to Bear Swamp watershed (located within USGS Hydrologic Unit Code 03020101, NCDWQ Subbasin 03-03-02 of the Upper Tar-Pamlico River Basin) that contributes drainage to the project site. The watershed analysis, including the assessment of stream channel, was conducted for the purpose of developing a clear understanding of existing system characteristics. The resulting Restoration Plan identified opportunities to improve water quality and overall system functions including targeted strategies such as wetland/riparian buffer preservation, stream restoration, and community education.

Following coordination with local leaders, the Wetlands Restoration Program and citizens groups, the project was initiated and focused on the restoration of approximately 1450 linear feet of degraded stream within the property limits of Murphy's Hay Farm. Detailed environmental assessments and engineering studies were conducted and design plans and documents were prepared to facilitate the stream and riparian buffer restoration. Implementation of the project was completed by July 2002.

The restoration of this portion of an UT to Bear Swamp Creek, located north of Louisburg in Franklin County, was conducted to correct identified system deficiencies including severe bank erosion, channel widening, and the loss of aquatic habitat resulting from stream channelization, the loss of riparian vegetation, and watershed development. The channel before restoration was a F5 and G5c stream type with actively eroding banks. Approximately 780 ft of new channel was created, and 680 feet of existing channel was stabilized. The goal of the project was to develop a stable stream channel with reduced bank erosion, efficient sediment transport, enhanced warm water fisheries, and improved overall stream habitat and site aesthetics. Implementation of the project was completed by July 2002.

1.1 Goals and Objective

The goals and objectives of this project are as follows:

- 1.) Restore 1,450-linear feet of the unnamed Tributary of Bear Swamp through a priority 2 natural channel design approach.
- 2.) Establish a riparian zone surrounding restored section of the unnamed Tributary of Bear Swamp Improve the habitat within the channel and the riparian zone.
- 3.) Incorporate this project into a watershed wide management plan.

1.2 Project Location

The UT of Bear Swamp Creek stream restoration is located in Franklin County, NC at Murphy's Hay Farm north of Louisburg. From Louisburg NC take Route 401 north towards Henderson. Approximately 1 mile north of Louisburg turn left onto West Dykings Road. Continue on Dykings Road 0.9 miles to Murphy's Hay Farm on the left. Turn into Murphy's Hay Farm the UT to Bear Swamp Creek is located in the pasture of the farm. The owner of the Farm is Glenn Murphy.

1.3 Project Description

A previously straight and incised channel UT of Bear Swamp Creek located at Murphy's Hay Farm was restored using channel dimension, pattern, and profile modifications and the establishment of riparian zone adjacent to the creek. Channel profile is maintained through the use of rock cross vanes. Channel pattern is maintained through the use of single vanes and vegetation along the channel banks. Due to easement constraints, pattern modifications were limited throughout the project.

2.0 YEAR 2004 RESULTS AND DISCUSSION

Year 2004 monitoring results are shown for the unnamed tributary of Bear Swamp Creek Monitoring.

2.1 Vegetation

Using the Draft Vegetation Monitoring Plan for NCWRP Riparian Buffer and Wetland Restoration Projects, 4 vegetation monitoring plots were randomly located within the riparian buffer of the Bear Swamp Creek tributary. No reference area was studied; therefore no comparisons could be made to reference conditions.

2.1.1 Results and Discussion

Vegetation within the riparian buffer varied in success level. Joe pye weed (Eupatoria fistulosum) and fescue (Festuca spp.) are especially doing well throughout the area. Live stakes are healthy in certain areas. Where living, live stakes thrived, sending up tall stems. Herbaceous vegetation, both planted and naturally regenerating, are doing extremely well and contribute to the bank stability of the project. Planted trees and shrubs are doing poorly throughout the entire buffer. In the fourth plot, no living planted tree stems were found. In the second plot, 3 tree species were noted, 2 of which had been planted. Extrapolation from the plots resulted in an overall average of approximately 40 planted trees per acre for this restoration site, with an average of 1 tree per plot.

Natural regeneration of woody stems dominated the plots, especially nearest the stream. Loblolly pine (Pinus taeda) was present in densities over 6,000 stems per acre. There is a large reproductive sweetgum (Liquidambar styraciflua) in the fourth plot, and a number of young trees surrounding it. Overall, the area appeared to be in an early successional state.

Recommendations include replanting trees to obtain mitigation requirements and live stakes only in areas where erosion is problematic. Invasive vegetation is not a major issue on this project site. The fescue should be monitored however, and may need control so more diverse herbaceous vegetation can develop.

2.2 Morphology

Restored channel dimension, pattern, profile and substrate were examined during the 2004 monitoring.

2.2.1 Results and Discussion

The unnamed Tributary of Bear Swamp Creek is sand bed channel with a percentage of gravel and therefore the dune and anti-dune characteristics of sand-bed sediment transport should be considered. The restoration construction created a B5c channel from an existing G5 / F5 channel. The valley slope is 1.9% at the project location, the tributary was restored with an entrenchment ratio or 1.8 to 2.0 and the ratio of the top of bank height to the bankfull height is approximately 2.5. There is one major bedrock outcrops that hold grade on this reach. The channel profile along UT to Bear Swamp Creek has not shown any significant changes in between the as-build profile and this year's monitoring. The stream is moving toward a step pool and run dominated system pools are filling in and riffles are flattening. Rock cross vanes are holding the grade of the stream. While there are three areas where structures have piping of water occurring below the head rock, there are no major failures with the rock cross vanes. Between the rock size, existing vegetation, and number of structures the piping occurring will not cause any of the structures a major failure. The three structures that are piping have resulted in a localized head cut of 4-8 inches. The stream profile of the as-build shows that riffles were constructed but are transitioning into runs. The design was most likely intended to build a riffle/pool sequence plan form B5c type channel for the majority of the project, but this intent was not maintained over the monitoring period thus far. The location of riffles has not changed significantly from construction to the present, but riffles have transitioned in to other bed features. The average riffle length has also increased and only the steeper riffles remain. The number of riffles has decreased and only the longer and or steeper riffles remain. Unless the substrate become more course the system will stay embedded with sand and will continue to migrate toward a run dominated system. During the 2004 monitoring period there were five semi-stable riffles observed and three un-stable riffles observed related to the piping of the three cross vane structures.

Cross section results were calculated using NCSU techniques for consistency purposes, there were no as-build cross sections available for analysis. Cross-sectional trends were analyzed by looking at the cross-sections, change in planform, BEHI, and the longitudinal profile. Cross-section 1 is a riffle and has a current cross sectional area of 10.4 square feet. Cross section 1 is fairly stable, has low near bank stress and a low bank erosion hazard. This first cross section classifies as a B5c channel with an ER of ~1.8, and is 10 ft upstream of a stable rock cross vane. Cross-section 2 is a riffle and has a current cross sectional area of 11.2 square feet. Cross section 2 is fairly stable, has low near bank stress and a low bank erosion hazard. This second cross section classifies as a B5c channel with an ER of ~1.8, and is 25 ft upstream of a stable rock cross vane. Cross-section 3 is a pool and has a current cross section 1 area of 18.8 square feet. Cross section 3 is fairly stable, has a low bank erosion hazard. There is a rock cross vane approximately 5ft upstream from cross section 3, this cross section is a scour pool. Cross-section 4 is fairly stable, has a moderate bank erosion hazard. There is a rock cross vane

approximately 5ft upstream from cross section 4, this cross section is a scour pool. Cross-section 5 is a riffle and has a current cross sectional area of 11.2 square feet. Cross section 5 is fairly stable, has low near bank stress and a low bank erosion hazard. This second cross section classifies as a B5c channel with an ER of \sim 1.8, and is 5 ft upstream of a bedrock outcrop and large sycamore roots that are holding grade.

The channel substrate in the riffle sections are sand and have a D50 of 0.24 mm with a D84 of 1.2 mm. The channel substrate in the pool sections are sand and have a D50 of 0.28 mm with a D84 of 1.2 mm. Future monitoring should better evaluate channel substrate and sediment loading patterns.

Channel pattern appears to have been maintained since construction. One of the outside meander bends are experiencing slight migration through bank slumping but no excessive migration is evident and no shoot cut-offs are apparent. The pattern aligns closely with the as-build pattern (Figure 4). Channel banks throughout The unnamed Tributary of Bear Swamp remains fairly stable, with the exception of two spot areas of bank slumping and scour. Slumping and scour is the result of a root wads being placed too high or down cutting due to piping of a structure that have exposed the lower portion of a root wad.

While loosing bedform this project has fairly stable banks and is able to transport the sediment supplied through the reach without forming mid-channel bars. There were no areas of concern noted due to high near bank stress and the bank erosion hazard index was used to rank the stream banks as having a moderate low erodibility rating. Bed scour is primarily limited to meander beds below structures where energy show be dissipated in a stream. Vegetation is growing well and there is a lot of volunteer growth on this project but does not meet the vegetation requirements of the Ecosystem Enhancement Program yet. This reach of the unnamed Tributary of Bear Swamp Creek is a run dominated sand bed stream but the system seems to be relatively stable with an aggrading bedform that is controlled by a major bedrock outcrops and rock vane structure. The owner was also commented that his cattle put on an extra 1 -2 pounds of weight a week since they have been fenced out of the stream and drinking from the supplied alternative watering sources.

2.3 Biological and Ecological

Two post-construction surveys have been conducted at this project. Results of the first post-construction investigation indicated that there were some improvements in the biological condition of the stream above background conditions. For example higher taxa richness and EPT abundance values were found as well as an increase in the Dominant in Common comparison (both to the upstream and to the ecoregional reference locations). These conditions do not improve during the second post-construction investigation. In fact, subtle declines in biological integrity were noted during this investigation.

2.3.1 Results and Discussion

Approximately 1450 linear feet of this UT to Bear Swamp Creek in Franklin County was restored in July 2002. Qual-4 samples were collected from three reaches of this tributary prior to and following construction to assess the recovery of this stream following restoration. Site 1 is above the 1450 linear foot reach on the UT to be restored. The stream at this point is stable with good instream and riparian habitat. The site was selected as an upstream reference reach and receives flow from a series of springs immediately above the site as well as overflow from an instream pond. Two sites were selected within the restoration reach. Site 2 is a midreach location approximately 50 meters below a bridge crossing. The stream prior to construction was severely degraded with very little riparian canopy and direct cattle access. Site 3 is located within a minimally forested reach of the stream at the lower end of the restoration project and appears to be aggrading. Abundance of benthic organisms at this location was much greater than at site 2 during the preconstruction survey and many tolerant organisms were collected at this site (i.e. Chironomus sp.) during this survey. Additional samples were collected from a UT to Crooked Creek, which was selected as the ecoregional reference site and used for the design of the new stream at Murphy Farm. The reference reach at the UT to Crooked Creek appears to be very stable and has a diverse benthic macroinvertebrate population.

	UT Ec	Crooked (oregional F	Cr., Ref.	UT Upstr	' Bear Swa ream Ref, S	mp Site #1	UT Be	ar Swamp,	Site #2	UT Bea	UT Bear Swamp, Site #3		
Date of Survey	12/2001	12/2003	11/2004	12/2001	12/2003	11/2004	12/2001	12/2003	11/2004	12/2001	12/2003	11/2004	
Total Taxa Richness	50	51	42	48	43	31	36	39	29	46	40	33	
EPT Taxa Richness	21	24	20	16	14	11	4	8	9	8	11	7	
EPT Abundance	100	107	96	69	67	59	8	48	31	23	44	29	
Dominant in Common Index (%)	-	-	-	59%	50%	48%	11% ³ (22%)	33% ³ (45%)	32% ³ (24%)	33% ³ (48%)	29% ³ (35%)	24% ³ (24%)	
# Keystone	12	14	15	6	7	10	2	1	4	3	2	2	

Table 11. Summary statistics from the stream restoration project at Murphy Farm,

³. DIC comparisons were made between the ecoregional reference location and the upstream reference reach (in parentheses) at these two locations

Table 11 summarizes the data from this project to date. A very rapid change in the composition of the benthic fauna occurred between the upstream reference site and

station 2 during the pre-construction survey. The upstream reference was dominated by fairly intolerant taxa including Diplectrona and Chimarra, but their numbers fall off drastically at station 2, these conditions suggest a shift in energy sources from heterotrophic to autotrophic. Many organisms that are abundant or common upstream were not collected at the downstream location during this survey. Abundance and taxa richness increase slightly at station three in 2001, perhaps responding to the slight increase in canopy cover. However tolerant fauna (Chironomus and Physella) dominated the benthic community at this most downstream location.

Conditions improve somewhat the first survey following restoration (2003). Note particularly the increase in EPT taxa richness and abundance values (in bold) during the 2003 survey at station 2 and an increase in the DIC to both of the reference reaches. These data suggest that water quality conditions have improved at this site following construction however; many of the EPT taxa collected at this site are tolerant (i.e. Hydropsyche betteni). Slightly higher EPT values were also found at station 3 and many of the very intolerant taxa collected during the 2001 survey were reduced in abundance. During a March 2004 inspection of this project, enrichment indicators (primarily filamentous algae) were noted from this reach of UT Bear Swamp, suggesting that nutrient laden runoff is entering the stream. Data also were collected from UT Crooked Creek that was selected as the reach for design. Taxa richness and abundance values were higher at this location. Many more mayflies and stoneflies were collected from this location than the upstream reference reach of UT Bear Swamp.

Data from the 2004 investigation suggests that the biological conditions of the restoration reach at Site 2 is similar to, or slightly poorer than, those recorded at this site in 2003. Although EPT increase marginally and we noted an increase in the number of keystone taxa, the dominant in common taxa was lower particularly if the upstream reference was used (45% in 2003 compared to 24% in 2004). All comparisons were somewhat lower at Site 3 during the 2004 investigation that those recorded in 2003. These data indicate that biological conditions at this project have not improved from those recorded in the previous investigation. Much of the difference between the communities at Site 1 and Site 2 are due to the loss of caddisfly taxa at the lower reach, in particular Chimarra and Diplectrona modesta.

Table 1. Summary of Channel Conditions

DIMENSION	UT Bear Swamp Cross-section #1 Riffle		UT Bear Cross-se Rif	Bear SwampUT Bear Swamps-section #2Cross-section #3RifflePool		UT Bear Cross-se Po	r Swamp ection #4 ool	UT Bear Cross-se Rif	r Swamp ection #5 ffle	
Monitoring Year	2003	2004	2003	2004	2003	2004	2003	2004	2003	2004
Bankfull Cross-sectional Area	N/A	10.4	N/A	11.2	N/A	18.8	N/A	13.6	N/A	11.2
Bankfull Width	N/A	10.3	N/A	10.2	N/A	13.6	N/A	13.5	N/A	10.6
Bankfull Mean Depth	N/A	1.0	N/A	1.1	N/A	1.4	N/A	1.0	N/A	1.1
Bankfull Max Depth	N/A	1.5	N/A	2.9	N/A	2.2	N/A	2.3	N/A	1.8

	UT	Г Bear Swar	np	UT Bear Swamp	UT Bear Swamp			
PATTERN		Design		As-built 2003	2004			
	Minimum	Maximum	Median	Minimum Maximum Median	Minimum	Maximum	Median	
Meander Wave Length	18	77	40	Not Reported	75	240	149	
Radius of Curvature	55	342	199	Not Reported	28	261	81	
Beltwidth	20	80	37	Not Reported	19	28	21	

	U.	Г Bear Swar	np	UT Bear Swamp UT Bear S			Swamp	
PROFILE		Design		As-built 2003 20			2004	
	Minimum	Maximum	Median	Minimum Maximum Median	Minimum	Maximum	Median	
Riffle Length	8	23	18	Not Reported	8	23	18	
Riffle Slope	0.2%	1.3%	0.7%	Not Reported	0.5%	3.4%	1.2%	
Pool Length	6	11	8	Not Reported	9	22	13	
Pool to Pool Spacing	19	61	37	Not Reported	23	66	45	
Valley (TOB) Slope		1.9%		Not Reported	1.9%			
Bankfull Slope	1.6%	1.6%	1.6%	Not Reported	1.4%	1.8%	1.8%	

	UT Bear Swamp		UT Bear Swamp		UT Bear Swamp		UT Bear Swamp		UT Bear Swamp	
SUBSTRATE	Cross-section #1		Cross-section #2		Cross-section #3		Cross-section #4		Cross-section #5	
	Rif	fle	Rit	ffle	Po	ool	Po	ool	Rif	fle
Monitoring Year	2003	2004	2003	2004	2003	2004	2003	2004	2003	2004
d50	N/A	0.15	N/A	0.23	N/A	0.26	N/A	0.30	N/A	0.35
d84	N/A	0.93	N/A	0.68	N/A	0.99	N/A	1.33	N/A	2.10

VECETATION 2004 Monitoring	Quad 1	- Bear	Quad 2	- Bear	Quad 3	- Bear	Quad 4	- Bear
VEGETATION 2004 Monitoring	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	680	80	280	0	960	200	360	0
Shrub Stratum (% cover)	8	n/a	11	n/a	0	n/a	0	n/a
Herb Stratum (%cover)	100	n/a	112	n/a	107	n/a	28	n/a

* Planted value represents number of stems observed alive that were planted.

2.3 Areas of Concern

The following areas of concern should be monitored closely and considered for repair as suggested:

Unnamed Tributary of Bear Swamp Creek

- Water piping through Rock Cross Vane structures
 - There are three rock cross vanes that are allowing water to pipe under the head rock of the structure at stations 1+60, 3+25 and 6+05
 - At station 1+60 the rock cross vane has water piping under the invert rock with a head loss of 4 inches due to the piping. At this point the structure is not at risk of complete failure due to the boulder size used for the vane construction, the total number of vanes in the project, and the existing vegetation
 - At station 3+25 the rock cross vane has water piping under the invert rock with a head loss of 4 inches due to the piping. At this point the structure is not at risk of complete failure due to the boulder size used for the vane construction, the total number of vanes in the project, and the existing vegetation
 - At station 6+05 the rock cross vane has water piping under the invert rock with a head loss of 8 inches due to the piping. At this point the structure is not at risk of complete failure due to the boulder size used for the vane construction, the total number of vanes in the project, and the existing vegetation
- Areas with bank erosion
 - Bank erosion has been noted at four locations on the stream
 - Bank Erosion due to localized head cuts of 4-8 inches from the piping of water through rock cross vanes occurred at stations
 - Some banks near root wads also have some localized bank erosion
 - There are two areas of major bank erosion due to the overland flow and seepage at station 7+45 on the left bank and station at 8+45 on the left bank Possible repairs would include regarding the gully, preparing this area and seeding with a tackafier and straw mulch
 - The entire length of restored stream has on five existing riffle features
- Vegetation
 - Replanting trees should occur to obtain mitigation requirements
 - The site could benefit from larger containerized trees both for bank stability and aesthetics, although mitigation requirements are currently being met.
 - It is recommended to stake in areas where erosion is problematic, particularly on outside meander bends.
 - Exotic invasive vegetation is a major issue on this project site. Without control the exotic invasive vegetation will likely out-compete native vegetation for resources. A maintenance plan is recommended for control of these species.

Photo Point 1 Downstream Station 00+93

Photo Point 2 Upstream Station 04+60

Photo Point 3 Downstream Station 04+80

Photo Point 3 Upstream Station 04+80

Photo Point 4 Downstream Station 07+10

Photo Point 4 Upstream Station 07+10

Photo Point 5 Downstream Station 10+75

Photo Point 5 Upstream Station 10+75

Photo Point 6 Downstream Station 11+75

Photo Point 6 Upstream Station 11+75

Photo Point 7 Downstream Station 12+90

Photo Point 7 Upstream Station 12+90

Project Name	UT to Bear Swamp
Cross Section	#1
Feature	Riffle
Date	7/14/04
Crew	Bidelspach, Clinton

			As-Built			2	004	Bank % Cum 9 1 20.2% 20.2% 3 17.3% 37.5% 0 19.2% 56.7% 3 17.3% 74.0% 3 7.7% 81.7% 0 9.6% 91.3% 4 3.8% 95.2% 1 1.0% 96.2% 2 1.9% 98.1% 1 1.0% 99.0% 1 1.0% 100.0%				
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %			
Silt/Clay	silt/clay	0.061	0	#DIV/0!	#DIV/0!	10	11	20.2%	20.2%			
	very fine sand	0.062	0	#DIV/0!	#DIV/0!	10	8	17.3%	37.5%			
	fine sand	0.125	0	#DIV/0!	#DIV/0!	10	10	19.2%	56.7%			
Sand	medium sand	0.25	0	#DIV/0!	#DIV/0!	10	8	17.3%	74.0%			
	course sand	0.50	0	#DIV/0!	#DIV/0!	0	8	7.7%	81.7%			
	very course sand	1.0	0	#DIV/0!	#DIV/0!	0	10	9.6%	91.3%			
	very fine gravel	2.0	0	#DIV/0!	#DIV/0!	0	4	3.8%	95.2%			
C	fine gravel	4.0	0	#DIV/0!	#DIV/0!	0	1	1.0%	96.2%			
G "	fine gravel	5.7	0	#DIV/0!	#DIV/0!	0	2	1.9%	98.1%			
1	medium gravel	8.0	0	#DIV/0!	#DIV/0!	0	1	1.0%	99.0%			
a	medium gravel	11.3	0	#DIV/0!	#DIV/0!	0	1	1.0%	100.0%			
v	course gravel	16.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
e	course gravel	22.6	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
I	very course gravel	32	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
	very course gravel	45	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
	small cobble	64	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
Cabbla	medium cobble	90	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
CODDIe	large cobble	128	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
	very large cobble	180	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
	small boulder	256	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
	small boulder	362	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
Boulder	medium boulder	512	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
	large boulder	1024	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
	very large boulder	2049	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
Bedrock	bedrock	40096	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%			
TOTA	L / %of whole count		0	#DIV/0!		40	64	100.0%				

	d16	d35	d50	d85	d95
2004	0.00	0.09	0.15	0.93	2.93

Project Name	UT to Bear Swamp
Cross Section	#2
Feature	Riffle
Date	7/14/04
Crew	Bidelspach, Clinton

			As-Built			2	004	% Cum % 12.0% 12.0% 0.0% 12.0% 34.0% 46.0% 20.0% 66.0% 22.0% 88.0% 12.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0%			
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %		
Silt/Clay	silt/clay	0.061	0	#DIV/0!	#DIV/0!	0	12	12.0%	12.0%		
	very fine sand	0.062	0	#DIV/0!	#DIV/0!	0	0	0.0%	12.0%		
	fine sand	0.125	0	#DIV/0!	#DIV/0!	20	14	34.0%	46.0%		
Sand	medium sand	0.25	0	#DIV/0!	#DIV/0!	20	0	20.0%	66.0%		
	course sand	0.50	0	#DIV/0!	#DIV/0!	0	22	22.0%	88.0%		
	very course sand	1.0	0	#DIV/0!	#DIV/0!	0	12	12.0%	100.0%		
	very fine gravel	2.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
G	fine gravel	4.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
G r	fine gravel	5.7	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
1	medium gravel	8.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
a	medium gravel	11.3	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
v	course gravel	16.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
е 1	course gravel	22.6	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
1	very course gravel	32	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
	very course gravel	45	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
	small cobble	64	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
Cabbla	medium cobble	90	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
CODDIe	large cobble	128	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
	very large cobble	180	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
	small boulder	256	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
	small boulder	362	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
Boulder	medium boulder	512	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
	large boulder	1024	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
	very large boulder	2049	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
Bedrock	bedrock	40096	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%		
TOTA	L / %of whole count		0	#DIV/0!		40	60	100.0%			

	d16	d35	d50	d85	d95
2004	0.10	0.16	0.23	0.68	1.19

Project Name	UT to Bear Swamp
Cross Section	#3
Feature	Pool
Date	7/14/04
Crew	Bidelspach, Clinton

			As-Built			2	004		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	0	#DIV/0!	#DIV/0!	0	20	20.4%	20.4%
	very fine sand	0.062	0	#DIV/0!	#DIV/0!	0	10	10.2%	30.6%
	fine sand	0.125	0	#DIV/0!	#DIV/0!	0	10	10.2%	40.8%
Sand	medium sand	0.25	0	#DIV/0!	#DIV/0!	0	24	24.5%	65.3%
	course sand	0.50	0	#DIV/0!	#DIV/0!	0	12	12.2%	77.6%
	very course sand	1.0	0	#DIV/0!	#DIV/0!	0	20	20.4%	98.0%
	very fine gravel	2.0	0	#DIV/0!	#DIV/0!	0	2	2.0%	100.0%
C	fine gravel	4.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	fine gravel	5.7	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
1	medium gravel	8.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
a	medium gravel	11.3	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
v	course gravel	16.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
e	course gravel	22.6	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
1	very course gravel	32	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	very course gravel	45	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	small cobble	64	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
Cabbla	medium cobble	90	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
Conne	large cobble	128	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	very large cobble	180	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	small boulder	256	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	small boulder	362	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	large boulder	1024	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	very large boulder	2049	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
TOTAL	L / % of whole count		0	#DIV/0!		0	98	100.0%	

	d16	d35	d50	d85	d95
2004	0.00	0.13	0.26	0.99	1.39

Project Name	UT to Bear Swamp
Cross Section	#4
Feature	Pool
Date	7/14/04
Crew	Bidelspach, Clinton

			As-Built			2	004		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	0	#DIV/0!	#DIV/0!	4	3	5.8%	5.8%
	very fine sand	0.062	0	#DIV/0!	#DIV/0!	12	1	10.8%	16.7%
	fine sand	0.125	0	#DIV/0!	#DIV/0!	23	0	19.2%	35.8%
Sand	medium sand	0.25	0	#DIV/0!	#DIV/0!	14	14	23.3%	59.2%
	course sand	0.50	0	#DIV/0!	#DIV/0!	3	13	13.3%	72.5%
	very course sand	1.0	0	#DIV/0!	#DIV/0!	2	16	15.0%	87.5%
	very fine gravel	2.0	0	#DIV/0!	#DIV/0!	2	13	12.5%	100.0%
C	fine gravel	4.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
G	fine gravel	5.7	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
1	medium gravel	8.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
a	medium gravel	11.3	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
v	course gravel	16.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
е 1	course gravel	22.6	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
1	very course gravel	32	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	very course gravel	45	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	small cobble	64	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
Cabbla	medium cobble	90	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
Copple	large cobble	128	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	very large cobble	180	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	small boulder	256	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	small boulder	362	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	large boulder	1024	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
	very large boulder	2049	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	#DIV/0!	#DIV/0!	0	0	0.0%	100.0%
TOTA	L / %of whole count		0	#DIV/0!		60	60	100.0%	

	d16	d35	d50	d85	d95
2004	0.09	0.18	0.30	1.33	2.40

Project Name	UT to Bear Swamp
Cross Section	#5
Feature	Riffle
Date	7/14/04
Crew	Bidelspach, Clinton

			As-Built			2	004		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	0	#DIV/0!	#DIV/0!	0	2	1.7%	1.7%
	very fine sand	0.062	0	#DIV/0!	#DIV/0!	8	1	7.5%	9.2%
	fine sand	0.125	0	#DIV/0!	#DIV/0!	19	2	17.5%	26.7%
Sand	medium sand	0.25	0	#DIV/0!	#DIV/0!	18	15	27.5%	54.2%
	course sand	0.50	0	#DIV/0!	#DIV/0!	6	15	17.5%	71.7%
	very course sand	1.0	0	#DIV/0!	#DIV/0!	0	10	8.3%	80.0%
	very fine gravel	2.0	0	#DIV/0!	#DIV/0!	0	12	10.0%	90.0%
C	fine gravel	4.0	0	#DIV/0!	#DIV/0!	0	3	2.5%	92.5%
G "	fine gravel	5.7	0	#DIV/0!	#DIV/0!	0	2	1.7%	94.2%
1	medium gravel	8.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	94.2%
a	medium gravel	11.3	0	#DIV/0!	#DIV/0!	0	1	0.8%	95.0%
v	course gravel	16.0	0	#DIV/0!	#DIV/0!	0	0	0.0%	95.0%
e	course gravel	22.6	0	#DIV/0!	#DIV/0!	0	0	0.0%	95.0%
I	very course gravel	32	0	#DIV/0!	#DIV/0!	0	2	1.7%	96.7%
	very course gravel	45	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
	small cobble	64	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
Cabble	medium cobble	90	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
Copple	large cobble	128	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
	very large cobble	180	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
	small boulder	256	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
	small boulder	362	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
Boulder	medium boulder	512	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
	large boulder	1024	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
	very large boulder	2049	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
Bedrock	bedrock	40096	0	#DIV/0!	#DIV/0!	0	0	0.0%	96.7%
TOTA	L / %of whole count		0	#DIV/0!		51	65	96.7%	

	d16	d35	d50	d85	d95
2004	0.13	0.24	0.35	2.10	60.25

Station 01+60 Root Wad Vane Failure

Station 03+20 Shallow Riffle

Station 03+40 Piping Vane Downstream

Station 03+40 Piping Vane Upstream

Station 04+30 Floodplain Culvert Inlet

Station 05+60 Floodplain Culvert Outlet

Station 06+20 High Root Wad

Station 07+70 Runoff Gulley

Station 07+70 Runoff Gulley from Fence

Station 08+20 Big Drop

Station 08+40 Rock Wall Root Wad

Station 09+40 Bank Slump

Station 11+00 High Root Wads

Station 12+25 Good Riffle

Station 13+50 Unnecessary Vane

Point	Station	Elevation	Description	Point	Station	Elevation	Description	Point	Station	Elevation	Description	Point	Station	Elevation	Description
2008	3.95	94.56	Thalweg	2005	C	95.05	Water	2302	6.49	96.76	LBKF	230	5 8.16	96.69	RBKF
2012	10.86	94.94	Thalweg	2017	24.9	95.02	Water	2301	20.03	96.19	LBKF	2303	3 22.62	96.4	RBKF
2014	18.35	94.95	Thalweg	2018	47.9	95.01	Water	2297	41.52	96.11	LBKF	2290	36.08	95.98	RBKF
2016	25.72	94.75 94.67	Thalweg	2032	52.25	94.64	Water	2295	71.73	95.78	LBKF	229	61.22	96.19	RBKF
2020	40.06	94.63	Thalweg	2044	89.62	94.5	Water	2285	106.3	95.56	LBKF	2290	75.08	95.52	RBKF
2022	43.9	94.7	Thalweg	2050	92.89	94.13	Water	2283	119.87	94.96	LBKF	228	89.93	95.07	RBKF
2024	48.86	94.78 95.01	I naiweg Rock Vane	2062	120.82	94.08 94.05	Water	2281	136.76	95.05 94.77	LBKF	228	91.76 123.25	95.08	RBKF
2029	54.92	92.37	Max Pool	2068	134.29	94.09	Water	2275	169.85	96.28	LBKF	2280	132.76	95.05	RBKF
2031	58.52	93.08	Thalweg	2074	145.4	93.69	Water	2271	188	94.6	LBKF	2270	162.91	95.14	RBKF
2033	61.01	94.4	I halweg	2076	155.25	93.69	Water	2269	200.12	94.25		2272	2 184.94	94.75	RBKF
2037	69.4	93.94	Thalweg	2000	166.87	93.31	Water	2263	238.35	94.08	LBKF	226	211.75	94.02	RBKF
2039	74.37	94.05	Thalweg	2089	170.91	93.31	Water	2261	250.22	94.03	LBKF	2264	226.88	94.48	RBKF
2041	75.18	94.34	Thalweg	2091	200.07	93.27	Water	2255	267.46	93.51		226	2 238.57	93.96	RBKF
2043	90.1	94.25	Thalweg	2114	209.97	93.04	Water	2253	303.42	93.18	LBKF	225	254.02	94.07	RBKF
2045	91.32	94.33	Rock Vane	2118	240.87	92.98	Water	2249	318.26	93.24	LBKF	2256	288.23	93.62	RBKF
2049	92.6	93.79	Thalweg	2122	254.04	92.92	Water	2245	343.51	91.96	LBKF	2254	303.3	93.05	RBKF
2051	100.91	93.89	Thalweg	2120	263.50	92.62	Water	2243	349.99	92.12	LBKF	223	330.35	92.55	RBKF
2055	106	93.68	Thalweg	2134	272.87	92.64	Water	2237	385.5	91.36	LBKF	2246	343.49	92.31	RBKF
2057	110.74	93.86	Thalweg	2146	298.01	92.61	Water	2235	396.03	91.16	LBKF	224	357.85	92.36	RBKF
2059	116.45	93.7	Thalweg	2148	303.24	92.52	Water	2233	408.17	90.96		2240	376.93	92.45	RBKF
2064	125.18	93.93	Thalweg	2163	326.41	90.98	Water	2225	441.75	90.75	LBKF	2230	393.98	92.05	RBKF
2063	125.56	93.93	Thalweg	2165	337.65	90.92	Water	2223	452.5	90.49	LBKF	223	405.41	91.85	RBKF
2065	129.58	93.69	Thalweg	2167	343.82	90.96	Water	2221	457.46	91.34		223	2 417.44	90.83	RBKF
2069	137.91	93.72	Thalweg	2186	373.75	90.47	Water	312	564.88	87.91	LBKF	2220	5 440.1	91.45	RBKF
2071	142.17	93.49	Thalweg	2190	397.6	90.37	Water	318	605.84	86.58	LBKF	28	562.29	87.97	RBKF
2073	145.35	93.65	Thalweg	2194	407.71	90.37	Water	256	625.7	86.25		274	602.49	87.95	RBKF
2073	156.66	93.27	Thalweg	2190	412.02	90.37	Water	216	710.35	84.63	LBKF	26	629.98	86.3	RBKF
2079	159.07	93.89	Rock Vane	2203	424.12	89.35	Water	208	730.14	84.22	LBKF	25	639.25	86.57	RBKF
2082	160.57	91.64	Head of Pool	2207	434.6	89.26	Water	203	741.22	83.86	LBKF	243	668.63	85.82	RBKF
2084	166.99	92.04	Head of Pool	2210	446.21	89.13	Water	188	768.89	82.95	LBKF	220	707.9	84.95	RBKF
2088	170.93	92.5	Thalweg	308	535.6	88.16	Water	181	783.29	83.4	LBKF	21	717.15	84.74	RBKF
2090	175.05	91.48	Thalweg	311	540.83	87.12	Water	164	810.74	82.43	LBKF	21	5 727.54	84.73	RBKF
2092	178.99	92.17	Thalweg	299	547.99	87.04	Water	160	828 917.11	82.92	LBKF	20) 756.4	84.23	RBKF
2096	186.59	92.76	Thalweg	294	572.7	86	Water	93	926.78	80.91	LBKF	193	761.16	83.58	RBKF
2098	192.87	92.59	Thalweg	287	588.07	85.81	Water	88	937.91	81.8	LBKF	189	769.04	83	RBKF
2102	202.64	93.02	Thalweg	284	597.3 604.7	85.38	Water	73	970.32	80.76		18.	2 781.73) 791.16	83.43	RBKF
2106	210.91	93.05	Rock Vane	265	608.78	84.78	Water	61	1014.08	79.34	LBKF	15	830.05	83.46	RBKF
2109	213.45	92.12	Head of Pool	273	623.66	84.84	Water	53	1029.72	78.85	LBKF	150	843.35	82.28	RBKF
2113	217.21	91.32	Thalweg	270	632.42	84.84	Water	322	1065.14	78.52		13	8 877.92 8 882.96	81.64	RBKF
2115	236.69	92.7	Thalweg	254	655.37	84.13	Water	327	1099.07	77.35	LBKF	119	900.22	82.07	RBKF
2117	240.76	92.67	Thalweg	250	662.14	83.81	Water	328	1116.51	77.05	LBKF	11	910.35	81.31	RBKF
2119	246.87	92.66	Thalweg	246	669.7	83.77	Water	330	1146.97	76.77		99	918.38	81.39	RBKF
2123	258.32	92.65	Thalweg	230	678.61	83.35	Water	337	1190.68	76.7	LBKF	92	945.53	81	RBKF
2125	263.2	92.54	Thalweg	242	688.12	83.28	Water	339	1202.75	75.95	LBKF	8	952.53	81.11	RBKF
2127	267.03	92.64 91.88	Rock Vane	239	695.07 702.47	83.13	Water	344	1212.2	76.1		80) 966.17	80.92	RBKF
2133	272.58	91.54	Thalweg	232	709.34	82.65	Water	351	1242.75	75.82	LBKF	6	993.49	80.03	RBKF
2137	276.39	92.09	Thalweg	227	716.03	82.42	Water	361	1262.78	74.5	LBKF	6	1010.63	79.56	RBKF
2135	279.36	92.36	Thalweg	223	725.14	82.35	Water	366	1287.63	74.25		54	1019.92	79.23	RBKF
2141	289.35	92.2	Thalweg	214	737.94	82.36	Water	374	1315	74.99	LBKF	4	1040.3	80.07	RBKF
2143	293.02	92.3	Thalweg	206	742.73	82.36	Water	378	1329.77	74.48	LBKF	32	1065.96	78.76	RBKF
2145	298.19	92.33	Thalweg	210	745.14	82.31	Water	381	1344.87	73.74	LBKF	323	3 1113.62) 1189.54	78.44	RBKF
2149	307.37	92.32	Thalweg	199	762.05	82.25	Water					343	1214.69	75.7	RBKF
2151	311.41	92.29	Thalweg	195	772.81	82.27	Water					346	6 1224.06	75.11	RBKF
2153	316.72	92.17	Thalweg	191	778.18	82.17	Water					350) 1239.24 I 1342.50	74.67	RBKF
2157	326.27	92.36	Rock Vane	176	793.22	81.21	Water					38	1347.07	74.28	RBKF
2162	327.66	88.29	Thalweg	179	800.24	81.1	Water								
2160 2164	332.38 338.08	88.78 90.47	riead of Pool Thalweg	171	815.81	80.93 80.97	vvater Water								
2166	342.33	90.69	Thalweg	155	838.58	80.95	Water								
2168	347.65	90.46	Thalweg	152	845.9	80.95	Water								
2170	353.88	90.56	Thalweg	145	848.26	80.64	Water								
2176	368.54	90.81	Rock Vane	141	863.47	80.57	Water								
2179	372.24	89.47	Thalweg	143	869.85	80.41	Water								
2181	376.15	89.36	Thalweg	137	874.6	80.44	Water								
2185	384.67	90.1	Thalweg	133	887.37	80.26	Water								
2187	389.89	90.22	Thalweg	125	895.53	80.23	Water								
2189	397.39	90.11	I halweg Thalweg	122	900.96	80.18	Water								
2191 2193	402.88	69.84 89.55	Thalweg	98	913.55	50.08 79.84	Water								
2195	412.89	89.37	Thalweg	108	930.94	79.52	Water								
2197	416.52	89.78	Thalweg	110	937.74	79.55	Water								
2199 2204	420.03 421.75	90.28 86.71	Head of Pool	106	941.11 948.97	79.44 79.38	Water								
2202	426.87	88.07	Thalweg	91	954.17	78.84	Water								
2206	433.33	88.54	Thalweg	83	968.79	78.82	Water								
2208	438.31	88.45	Thalweg	79 75	9/6.94	78.74 78.75	Water								
297	530.37	87.97	BOC	56	999.75	78.14	Water								
313	535.6	87.79	Rock Vane	45	1032.93	78.23	Water								
310	540.25 544.33	84.77 86.01	wax Pool Head of Glide	38	1037.92	78.26	vvater Water								
304	548.02	86.82	Thalweg	32	1061.9	78.2	Water								
302	557.96	86.8	Thalweg	30	1067.63	78.15	Water								
∠98 296	570.03	86.87	Rock Vane	28	1074.28	78.09	Water								

293	572.64	83.68	Max Pool	24
289	579.34 588 29	85.59 85.66	Thalweg	22 20
283	597.35	84.99	Thalweg	18
280	604.57	84.99	Thalweg	16
278	608.14	85.98 82.94	Max Pool	12
275	616.37	84.53	Thalweg	6
272	623.14	84.33	Thalweg	354
267	638.84	84.57	Rock Vane	370
261	643.19	82.44	Thalweg	377
257	649.04 655.68	83.76	Thalweg	386
249	662.16	83.68	Thalweg	
245	669.93	83.23	Thalweg	
234	674.9 678.96	83.53 80.92	ROCK Vane Max Pool	
241	687.78	83.06	Thalweg	
238	695.13	82.96	Thalweg	
236	702.13	82.65	Thalweg	
226	715.55	82.15	Thalweg	
222	724.8	82.19 81.73	Thalweg	
213	737.36	81.84	Thalweg	
209	745.41	82.2	Rock Vane	
205	750.05 754.18	81.39	Max Pool Thalweg	
198	762.02	81.94	Thalweg	
194	772.21	81.72	Thalweg	
190 186	786.27	81.32	Thalweg	
183	790.65	82.24	Rock Vane	
175	793.29	79.28	SP	
178	807.29	80.91	Thalweg	
170	816.11	80.62	Thalweg	
167	820.02	80.42	Thalweg	
162	827.62	80.11	Thalweg	
158	834.82	80.53	Thalweg	
154 151	838.12 843.23	80.47	Thalweg	
148	846.59	80.8	Rock Vane	
147	848.93	79.8	Thalweg	
144	852.57	79.92	Thalweg	
140	863.55	80.28	Thalweg	
142	869.67	79.95	Thalweg	
136	879.44	80.18	Thalweg	
130	887.04	80.25	Rock Vane	
127 124	891.49 894 77	78.97	Max Pool Head of Glide	
121	900.51	79.8	Thalweg	
116	906.09	80.03	Thalweg	
112 97	913.33 921.75	79.78	Thalweg	
102	928.5	79.24	Thalweg	
107	931.39	78.12	Head of Pool	
109	937.49	78.75	Thalweg	
100	945.38	79.46	Rock Vane	
94	949.3 954.04	77.37	Head of Pool	
85	960.42	78.02	Thalweg	
82	968.62	78.57	Thalweg	
78 74	976.89 982 19	78.27	Thalweg	
69	989.17	78.47	Thalweg	
66	994.71	78.55	Rock Vane	
63 59	998.07 1002.56	76.84	Thalweg	
55	1004.89	77.56	Thalweg	
51	1015.16	77.71	Thalweg	
40	1029.84	77.56	Thalweg	
42	1033.82	78.01	Rock Vane	
37	1037.95	74.89	Max Pool Max Pool	
39	1047.68	76.92	Thalweg	
33	1047.68	78.15	Thalweg	
29	1062.23	78.01	Thalweg	
27	1074.32	77.97	BR	
25	1077.25	77.46	BR	
21	1097.48	75.91	Max Pool	
19	1101.44	76.3	Thalweg	
17 15	1112.23 1120.04	76.19 76.33	i naiweg Rock Vane	
13	1126.14	74.96	Max Pool	
11	1132.13	76.16	Thalweg	
9 7	1143.08 1155.89	76.03	Thalweg	
5	1166.26	75.88	Thalweg	
250	1168.76	75.88	Rock Vane	
352 355	1246.84	73.46	Thalweg	
358	1263.54	73.04	Thalweg	
369	1301.08	73.21	Rock Vane	
376	1311.46	72.95	Thalweg	
379	1321.6	73.13	Thalweg	
382 385	1334.59 1341.04	72.52	naiweg Max Pool	
500				

76.61 Water 76.59 Water 76.55 Water 76.48 Water 76.33 Water 76.24 Water 76.24 Water 73.97 Water 73.97 Water 73.37 Water 73.27 Water 73.03 Water

1079.91 1097.31 1099.79 1112.59 1119.53 1131.89 1142.05 1167.32 1240.59 1262.38 1300.5 1311.45 1340.4

Point	Station	Elevation	Description	Point	Station	Elevation	Description				
2312	80 75	95 76	X1	2026	50 33	95.01	Rock Vane	2306	2 16	103.06	Top of Bar
2311	80 75	97.85	X1	2045	91.32	94.33	Rock Vane	2300	31.99	99.9	Top of Bar
2310	80.75	98.84	X1	2079	159.07	93.89	Rock Vane	2292	69.77	98.58	Top of Bar
2309	80.75	98.89	X1	2106	210.91	93.05	Rock Vane	2282	132.37	98.62	Top of Bar
2308	80.75	98.4	X1	2157	326.27	92.36	Rock Vane	2277	154.9	101.93	Top of Bar
2307	80.75	98.07	X1RP	2176	368.54	90.81	Rock Vane	2274	169.69	97.99	Top of Bar
2314	80 75	94.39	X1T	2199	420.03	90.28	Rock Vane	2267	184.08	100.51	Top of Bar
2313	80 75	94.5	X1W	313	535.6	87 79	Rock Vane	2266	225 11	97.07	Top of Bar
2315	80 75	94.6	X1W	296	570.03	86.87	Rock Vane	2259	265 72	97.36	Top of Bar
2324	129.91	100.66	X2	278	606 11	85.98	Rock Vane	2258	267 19	95.97	Top of Bar
2327	129.91	97.05	X2	234	674 9	83 53	Rock Vane	2252	313 59	95.6	Top of Bar
2329	129.91	94 71	X2	209	745 41	82.2	Rock Vane	2202	325.6	97.33	Top of Bar
2328	129.91	95.38	X2	183	790.65	82.24	Rock Vane	2239	365.05	97.32	Top of Bar
2325	129.91	99.67	X2	148	846 59	80.8	Rock Vane	2200	375.49	95.59	Top of Bar
2326	129.91	98.65	X2	130	887.04	80.25	Rock Vane	2230	419.35	94	Top of Bar
2323	120.01	101 7	X2	66	994 71	78 55	Rock Vane	2200	453.62	93.81	Top of Bar
2338	120.01	98 33	X2	42	1033.82	78.00	Rock Vane	2220	462.24	94.83	Top of Bar
2337	120.01	08.03	X2 X2	360	1301.02	73.21	Rock Vane	306	532.24	01.00	Top of Bar
2007	120.01	07.02	X2 X2	267	620 04	94.57	Rock Vane	200	540.94	01.07	Top of Bar
2008	129.91	97.92	X2 X2	207	030.04	70.46	Rock Vane	200	570.62	91.02	Top of Bar
2000	129.91	97.23	X2 X2	100	1169 76	75.40	Rock Vane	219	590.6	90.4	Top of Bar
2000	129.91	95.27	ΛZ V2	4	1100.70	75.00	Rock Vane	310	500.0	91.17	Top of Bar
2004	129.91	94.72		212	267.03	70.33	Rock Vane	200	620.7	09.91	Top of Bar
2322	129.91	102.75		2127	207.03	92.04	ROCK Valle	252	642.01	09.00	Top of Bar
2340	129.91	97.90						209	677.2	09.29	Top of Bar
2331	129.91	93.67	X21 X2W					233	577.3	88.00	Top of Bar
2332	129.91	94.15	X2W					212	722.03	87.00	Top of Bar
2330	130.54	92.46	X2W					211	731.43	80.77	Top of Bar
2333	132.48	94.08	X2VV					196	758.5	86.26	Top of Bar
2354	2/5./6	97.49	X3					185	789.82	85.67	Top of Bar
2352	2/5./6	96.91	X3					161	819.5	85.07	Top of Bar
2351	275.76	94.08	X3					156	833.67	85.04	Top of Bar
2353	275.76	96.95	X3					153	846.34	85.75	Top of Bar
2346	275.76	92.69	X3					126	873.57	83.94	Top of Bar
2355	275.76	99.14	X3					123	898.37	84.25	Top of Bar
2356	275.76	100.95	X3					114	907.01	83.58	Top of Bar
2343	275.76	95.48	X3					104	917.67	84.04	Top of Bar
2342	275.76	95.67	X3					89	953.34	83.6	Top of Bar
2357	275.76	101.35	X3LP					67	984.22	83.03	Top of Bar
2341	275.76	95.86	X3RP					72	988.85	83.26	Top of Bar
2344	275.76	94.33	X3RV					50	1029.09	82.29	Top of Bar
2350	275.76	93.66	X3RV					319	1052.39	82.33	Top of Bar
2347	275.76	91.81	X3T					320	1054.62	82.08	Top of Bar
2348	275.76	91.85	X3W					326	1124.12	81.48	Top of Bar
2345	275.76	92.22	X3W					331	1153.53	81.02	Top of Bar
2349	275.76	92.34	X3W					341	1206.58	79.09	Top of Bar
413	1015.31	82.48	X4					353	1228.34	82.38	Top of Bar
416	1015.31	81.29	X4					349	1241.97	78.12	Top of Bar
418	1015.31	79.74	X4					363	1282.22	80.14	Top of Bar
420	1015.31	79.04	X4					367	1294.65	77.8	Top of Bar
424	1015.31	78.17	X4					371	1308.84	77.34	Top of Bar
417	1015.31	79.03	X4					387	1340.21	77.96	Top of Bar
419	1015.31	78.52	X4								
415	1015.31	79.92	X4								
410	1015.31	82.35	X4								
2361	1015.31	84.65	X4LP								
2358	1015.31	84.6	X4RP								
408	1015.31	83.62	X4RP								
421	1015.31	77.38	X4T								
422	1015.31	77.82	X4T								
423	1015.31	77.87	X4W								
404	1062.58	82.36	X5								
407	1062.58	82.32	X5								
405	1062.58	79.46	X5								
403	1062.58	78.26	X5								

400

398

395

392

1062.58

1062.58

1062.58

1062.58

1062.58

394 1062.58391 1062.58

81.45 X5

77.11 X5

77.02 X5

77.96 X5

80.58 X5 78.67 X5 81.65 X5

390	1062.58	83.06	X5
396	1062.58	81.99	X5
397	1062.58	82.21	X5
409	1062.58	83.7	X5LP
2359	1062.58	84.35	X5LP
389	1062.58	83.43	X5LP
393	1062.58	82.04	X5RP
2360	1062.58	83.15	X5RP
401	1062.58	76.74	X5T
402	1062.58	77.19	X5W
399	1062.58	77.11	X5W

Cross Section 1 Downstream Station 01+00

Cross Section 1 Upstream Station 01+00

Cross Section 2 Downstream Station 01+50

Cross Section 2 Upstream Station 01+50

Cross Section 3 Downstream Station 02+95

Cross Section 3 Upstream Station 02+95

Cross Section 4 Downstream Station 10+00

Cross Section 4 Upstream Station 10+00

Cross Section 5 Downstream Station 10+75

Cross Section 5 Upstream Station 10+75

Bear Swamp Tributary Restorat	ion								
Louisburg, Franklin County, NC									
		Quad 1							
Tree Stratum									
Species	Height (cm)	Diameter (mm	Radius (mm)	Σ X-sec. (mm ²)	Rel. x-sec (%)	Density	Rel. Density (%)	Rank (Importance)	Average
Pinus taeda						161			
Ostrva virginiana	271	32	16	817					
	132	32	16	817					
Total			32.3	1634.5	100.0	2	1.2	1	50.6
Overall Total			32.3	1634.5	100	163	1.2		
Total Trees per acre						6520			
Planted trees per acre						80			
Natural regen. trees per acre						6360			
Ohan hi Ohan tu sa									
Shrub Stratum									
Species	<u>Cover (%)</u>	Rel. cover (%)	Density	Rel. Density (%)	Rank (Importance)				
Salix nigra	5	100.0	5	100	1				
Tatal	-	400.0		0					
lotai	5	100.0	5	100					
Herb Stratum									
Species	Cover (%)	Rel. cover (%)	Rank (Importance)						
Eupatorium capillifolium	2	5.7							
Aster spp.	3	8.6							
Festuca spp.	30	85.7							
Total	35	100							

Louisburg, Franklin County, NC										
<u> </u>		Quad 2								
Tree Stratum										
Species	Height (cm)	Diameter (mm	Radius (mm)	Σ	X-sec. (mm ²)	Rel. x-sec (%)	Density	Rel. Density (%)	Rank (Importance)	Average
Juqlans nigra	7	1 6	<u> </u>	3.2	31.7	6.1				
0 0	72	2 8								
Total	71	1 6		3.2	31.7	6.1	2	2.8		
Pinus taeda	45	5 3		1.6	7.9	1.5				
	44	4 8		4.0	49.5	9.6				
	32	2 6		3.2	31.7	6.1				
	29	3 3		1.6	7.9	1.5				
Total				10.3	97.0	18.8	69	95.8	1	57.3
Fraxinus spp.	74	4 22		11.1	387.9	75.1				
Total				11.1	387.9	75.1	1	1.4		
Overall Total	1			13.5	516.6	100.0	72	100		
Total Trees per acre							2880			
Planted trees per acre							120			
Natural regen. trees per acre							2760			
Shrub Stratum										
Species	Cover (%)	Rel. cover (%)	Density	R	el. Density (%) F	Rank (Importance)				
Salix nigra		5 100.0		7	100	1				
					0					
Total		5 100.0		7	100					
Herb Stratum										
Species	<u>Cover (%)</u>	Rel. cover (%)	Rank (Importance	<u>ce)</u>						
Erigeron spp.	20	14.6								
Vicia spp.	3	3 2.2								
Festuca spp.	70	51.1								
Trifolium spp.	40	29.2								
Aster spp.	2	2 1.5								
Stellaria spp.	2	2 1.5								
	-	400.0								

Bear Swamp Tributary Resto	ration								
Louisburg, Franklin County, N	NC								
Quad 3									
		Quad 0							
Tree Stratum									
Species	Height (cm)	Diameter (mm)	Radius (mm)	ΣX-sec. (mm ²)	Rel. x-sec (%)	Density	Rel. Density (%)	Rank (Importance)	Average
Betula nigra	119.4	0.5	0.3	0.2					
Total			0.3	0.2	0.000171912	1	16.7		
Pinus taeda	63.5	381.0	190.5	114009.2					
	58.4	9.5	4.8	71.3					
	43.2	6.4	3.2	31.7					
	53.3	6.4	3.2	31.7					
	38.1	9.5	4.8	71.3					
Total			15.9	114215.0	100.0	5	83.3	1	91.7
Overall To	otal		16.1	114215.2	100.0	6	100		
Total Trees per acre						240			
Planted trees per acre						40			
Natural regen. trees per acre						200			
Shrub Stratum									
Species	<u>Cover (%)</u>	<u>Rel. cover (%)</u>	<u>Density</u>	Rel. Density (%)	Rank (Importance)				
no shrubs present									
Total									
Herb Stratum									
Species	<u>Cover (%)</u>	<u>Rel. cover (%)</u>	Rank (Importance)						
Trifolium spp.	60	88.2							
Vicia spp.	2	2.9							
Carex spp.	2	2.9							
Aster spp.	3	4.4							
Festuca spp.	1	1.5							
Total	68	100.0							
1									

Bear Swamp Tributary Restoration									
Louisburg, Franklin County, NC									
		Quad 4							
		Quuu i							
Tree Stratum									
Species	Height (cm)	Diameter (mm)	Radius (mm)	Σ X-sec (mm ²)	Rel x-sec (%)	Density	Rel Density (%)	Rank (Importance)	Avorano
Pinus taeda	<u>56.2</u>	<u>6 4</u>	3.2	<u>2 A-360. (IIIII)</u> 31 7	<u>Itel: X-Sec (70)</u>	<u>Density</u> 40	Itel. Delisity (70)	Marik (Importance)	Average
	115.6	2.5	1.3	51		40			
Total	110.0	2.0	4.4	36.7	1.0	40	75.5	1	
				••••	•			•	
Liquidambar stvracifula	132.1	6.4	3.2	31.7					
	217.5	6.4	3.2	31.7					
	185.4	12.7	6.4	126.7					
	52.4	4.8	2.4	17.8					
	103.2	12.7	6.4	126.7					
	175.4	15.9	7.9	197.9					
	176.5	19.1	9.5	285.0					
	189.2	38.1	19.1	1140.1					
	174.3	19.1	9.5	285.0					
	216.2	27.0	13.5	572.0					
	196.9	19.1	9.5	285.0					
	175.3	22.2	11.1	387.9					
	221.0	15.9	7.9	197.9					
Total			109.5	3685.5	99.0	13	24.5	2	61.8
Overall Total			114.0	3722.2	100.0	53	100		
Total Trees per acre						2120			
Planted trees per acre						0			
Natural regen. trees per acre						2120			
Shrub Stratum									
<u>Species</u>	<u>Cover (%)</u>	<u>Rel. cover (%)</u>	Density	Rel. Density (%)	Rank (Importance)				
Total									
Herb Stratum									
<u>Species</u>	<u>Cover (%)</u>	<u>Rel. cover (%)</u>	Rank (Importance)						
<i>Fragaria</i> spp.	4	26.7							
Vicia spp.	2	13.3							
Festuca spp.	2	13.3							
Aster spp.	5	33.3							
Trifolium spp.	2	13.3							
Total	15	100.0							
]		